Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bis(2,6-diamino-3,5-dibromopyridinium) tetrabromocuprate(II)

Roger D. Willett et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bis(2,6-diamino-3,5-dibromopyridinium) tetrabromocuprate(II)

Roger D. Willett,^a* Salim F. Haddad^b and Brendan Twamley^c

^aDepartment of Chemistry, Washington State University, Pullman, WA 99164, USA, ^bDepartment of Chemistry, University of Jordan, Amman, Jordan, and ^cUniversity Research Office, University of Idaho, Moscow, ID 83844, USA Correspondence e-mail: willett@mail.wsu.edu

Received 9 August 2000 Accepted 4 September 2000

Data validation number: IUC0000243

The title compound, $(C_5H_6Br_2N_3)_2[CuBr_4]$, contains isolated substituted pyridinium cations and $[CuBr_4]^{2-}$ anions. The diaminodibromopyridinium ions are planar, while the Cu^{II} ions have a distorted compressed tetrahedral coordination with C_2 symmetry. The two independent *trans*-Br-Cu-Br angles are 128.9 (1) and 136.0 (1)°, with Cu-Br distances of 2.3939 (15) and 2.3790 (16) Å.

Comment

The catalytic halogenation of activated pyridine rings by copper(II) halides is a common phenomenon. The bromination step presumably involves reduction of Cu^{II} to Cu^{I} , with the subsequent re-oxidation to Cu^{II} by atmospheric oxygen. In our attempts to prepare various substituted pyridinium salts of copper(II) halides, we have frequently isolated the corresponding halogenated salts (Willett & West, 1987; Willett, 1988, 2000; Place & Willett, 1987; Willett & Halvorson, 1988). With 2,6-diaminopyridine, we have previously reported the

formation and isolation of the corresponding 3,5-dichloro derivative (Willett & West, 1987) as the $[CuCl_4]^{2-}$ salt. However, the compound crystallizes in a different space group.

In the title compound, (I), the cation is nearly planar. However, the Br5 atom lies 0.116 Å out of the plane of the pyridine ring. This is probably due to steric repulsion with the adjacent NH₂ group. The $[CuBr_4]^{2-}$ anion has a slightly compressed tetrahedral geometry with a substantial (but not unusual) distortion from idealized D_{2d} symmetry (Place & Willett, 1988).

Experimental

2,6-Diaminopyridine (0.01 mol, 1.09 g) and CuBr_2 (0.005 mol, 1.12 g) were dissolved in dilute HBr (100 ml, *ca* 0.1 *M*) and the resultant solution was evaporated slowly at *ca* 323 K. The compound was obtained as small nearly opaque purple crystals after two days.

Crystal data

C-H-Br-N-)-[CuBr.]	$D = 2.741 \text{Mg m}^{-3}$
$a_{16} = 010.08$	$D_x = 2.741$ Wig in Mo. Key radiation
$M_r = 919.08$	NO Ka Taulation
Aonoclinic, $C2/c$	Cell parameters from 5523
a = 20.612 (10) Å	reflections
p = 10.053 (5) Å	$\theta = 2.38 - 24.70^{\circ}$
= 13.507 (7) Å	$\mu = 15.340 \text{ mm}^{-1}$
$B = 127.264 \ (7)^{\circ}$	T = 293 (2) K
$V = 2227.3 (19) \text{ Å}^3$	Plate, purple
Z = 4	$0.380 \times 0.180 \times 0.025 \text{ mm}$

 $R_{\rm int} = 0.056$ $\theta_{\rm max} = 24.70^{\circ}$

 $h = -16 \rightarrow 24$

 $k = -11 \rightarrow 11$

 $l = -15 \rightarrow 14$ 50 standard reflections

data collection

intensity decay: 0.01%

frequency: beginning and end of

Data collection

Bruker CCD area-detector diffract-
ometer
φ and ω scans
Absorption correction: empirical
(SADABS; Bruker, 1998)
$T_{\min} = 0.045, \ T_{\max} = 0.681$
5523 measured reflections
1849 independent reflections
1274 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.050$	$w = 1/[\sigma^2(F_o^2) + (0.0744P)^2]$
$wR(F^2) = 0.129$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.019	$(\Delta/\sigma)_{\rm max} < 0.001$
1849 reflections	$\Delta \rho_{\rm max} = 1.31 \text{ e } \text{\AA}^{-3}$
138 parameters	$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$

The H atoms were found on difference Fourier syntheses and the positional parameters and isotropic displacement parameters were refined. The X-H distances were restrained to a distance of 0.96 (5) Å. The largest residual electron-density peaks all lie within 1.06 Å of Br atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

References

Bruker (1997). *SMART* (Version 4.045) and *SAINT* (Version 4.035). Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Place, H. & Willett, R. D. (1987). Acta Cryst. C43, 1497-1500.
- Place, H. & Willett, R. D. (1988). Acta Cryst. C44, 34-38.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Willett, R. D. (1988). Acta Cryst. C44, 450-453.
- Willett, R. D. (2000). Inorg. Chem. Submitted.
- Willett, R. D. & Halvorson, K. (1988). Acta Cryst. C44, 2068-2071.
- Willett, R. D. & West, D. X. (1987). Acta Cryst. C43, 2300-2303.